MDOT North Region
Road Weather Information System
Concept of Operations

Presented by:
Kimley-Horn of Michigan, Inc.

In association with:
CAMBRIDGE SYSTEMATICS
Transportation leadership you can trust.

HNTB
Richard A. Foltman Consulting
Overall Project Description

- **Six Concept of Operations**
 - 4 TMC ConOps (3 Regional, 1 Statewide)
 - 2 Regional RWIS ConOps

- **Focus of RWIS Projects**
 - Identification of System Requirements
 - Roles and Responsibilities of Agencies Involved
 - Prioritized Phases for RWIS Regional Deployment
 - Fiscal Assessment Assuming a 10 Year Deployment
Concurrent Projects

- Additional RWIS Projects
 - Superior, Grand, Metro Regions

- TMC
 - Existing MITS Center in Detroit and West Michigan
 - TMC in Grand Rapids
 - Planned TMCs for North Region, Grand Traverse Joint
 TMC, Superior Region, and Statewide

- Statewide ATMS Deployment
Project Background

- What is the catalyst
 - Project was identified during the Regional ITS Architecture and Deployment Plan
 - High priority for Maintenance and Construction

- How will it be used
 - Winter Weather Maintenance
 - Environmental Conditions (i.e. visibility)
 - Coordination with TMCs
North Region Project Team

- Michigan Department of Transportation
 - Matt Radulski, Project Manager
- Consultant Team
 - Kimley-Horn of Michigan (Lead Consultant)
 - Cambridge Systematics (ConOps, SE)
 - HNTB (Data Collection, Field Investigations)
 - Rick Foltman (Meteorologist)
Stakeholders – Participating Agencies

- MDOT North Region TMC (Planned)
- MDOT North Regional Office and TSC Offices
- County Road Commission (CRC)
 - Maintenance Garages
- Michigan State Patrol (MSP) and Local Law Enforcement
- NWS
- County Emergency Operation Centers
ConOps Development Process

- **Project Kick-off Meeting**
 - Meteorologist Identified Locations
 - Concept of Operations submittal
 - Workshop
 - Draft list of locations
 - Use case scenarios
 - Phase distribution & confirmation
- **Preliminary Research**
 - Workshop
 - Confirm information from the survey
 - Field Study
 - Geographic
 - Communications
 - Power supply
- **Stakeholder Survey**
 - Deployment of Phase 1
- **Meeting**
 - Deliverable
Preliminary Research

- Operational Issues
 - Safety, Mobility, and Productivity
- Institutional Issues
 - Coordination for Maintenance Activities
 - Access toExisting Data Sources (ASOS, AWOS, etc.)
- Technical Issues
 - Integration with ATMS and TMC
 - Information to Field Forces
Stakeholder Survey

Identification of “Hot Spots”

- Stakeholder input
 - Stakeholder Identification of Experienced Issues

- Data Collection Guide / Survey
 - 3 Impact Areas (Mobility, Safety, Productivity)
 - Guiding Questions / Descriptors
 - Areas that experience a reduction in speed
 - High crash locations
 - Areas that require additional treatment
 - Location, Rank, Existing Resources
Preliminary Siting

- Mapping of Existing Data Sources (AWOS, ASOS...)
- Mapping of Identified “Hot Spots”
- Reference the FHWA Siting Guidelines
- MDOT North Region Workshop – Input from all Stakeholders
- Major Thoroughfares (ADT)
- Michigan Meteorological Factors

MDOT
Site Refinement & Confirmation

- Use Case Scenarios Presented
- Sites Confirmed and Refined
- Ranked
 - Traffic Rank
 - Weather Rank
 - MDOT/Workshop Factor
 - Local/Other factors
- Workshop
Functional Requirements

System Needs

- Enhance NWS Ability to Monitor Large Storms
- Integrate with the Statewide ATMS software
- Provide Specific Data to Field Personnel
- Supplement Existing Atmospheric Data Points with Road Surface Condition Data Points
Functional Requirements

User Needs

<table>
<thead>
<tr>
<th>Data Collected</th>
<th>MDOT</th>
<th>MSP</th>
<th>CRC</th>
<th>NWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric Temperature (Air)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Flooding/Water Level</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pavement Temperature</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Precipitation (Type, Intensity)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Snow Depth</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Visibility</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Water Vapor (Humidity)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Wind Speed</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CCTV Camera Images</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Functional Requirements

Data Needs

Types of Sensor Available

<table>
<thead>
<tr>
<th>Data Collected</th>
<th>Sensor Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>Precipitation (Type, Intensity)</td>
<td>Rain Gauge, Optical Present Weather Detector</td>
</tr>
<tr>
<td>Atmospheric Temperature (Air)</td>
<td>Thermometer</td>
</tr>
<tr>
<td>Pavement Temperature</td>
<td>Pavement Sensor</td>
</tr>
<tr>
<td>Wind Speed</td>
<td>Anemometer and Wind Vane or Aerovane (combination of the two)</td>
</tr>
<tr>
<td>Enhanced</td>
<td></td>
</tr>
<tr>
<td>Visibility</td>
<td>Visibility Sensor</td>
</tr>
<tr>
<td>Water Vapor (Humidity)</td>
<td>Hygrometer</td>
</tr>
<tr>
<td>Snow Depth</td>
<td>Snow Depth Sensor</td>
</tr>
<tr>
<td>Flooding/Water Level</td>
<td>Float Gauge, Conductance Sensor</td>
</tr>
<tr>
<td>CCTV Images</td>
<td>CCTV Camera</td>
</tr>
</tbody>
</table>
Functional Requirements

Site Needs

- Location for Most Relevant Data
- Accessible Power Supply and Communication
- Not Allow Data to be Influenced by Immediate Surroundings (such as large buildings, dense tree growth, etc.)
Field Study

General Observations

- Wide Open Area? Any Obstructions?
- Available Right of Way
- Terrain Around the Site
- GPS Coordinates of the Devices if Needed (including elevation)
- Photographs at Each Site
- Small Diagram Depicting the Site Location with Respect to Roadway
Field Study

Power and Communications

- Existing Cell Towers in the Vicinity
- Tree Heights Near the Site Location (Line of Sight and Unobstructed Measurement of Wind)
- Existing ITS Cabinets, Power Poles or Underground Utilities
- Which Company is Responsible for Providing Power Connection to the Site Area
Phase Distribution

- Requirements and Related Rank
- Estimated Costs
- Projects – *(Phase 1-5)*
10-Year Budget Overview

<table>
<thead>
<tr>
<th>Year</th>
<th>Maintenance</th>
<th>Construction</th>
<th>Preliminary Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$300,000.00</td>
<td>$100,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>$400,000.00</td>
<td>$200,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>$500,000.00</td>
<td>$300,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>$600,000.00</td>
<td>$400,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>$700,000.00</td>
<td>$500,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>$800,000.00</td>
<td>$600,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>$900,000.00</td>
<td>$700,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>$900,000.00</td>
<td>$800,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>$900,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>$1,000,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>$1,100,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>$1,200,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>$1,300,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>$1,400,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>$1,500,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>$1,600,000.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Concept of Operations

- Submittal to Stakeholders for Comments
- Includes Stand Alone Appendices for Each Phase
 - Summary of proposed locations
 - Proposed costs
 - Field study information
 - Map
North Region – RWIS Phase 1

- Site Selection
 - Funding
 - Con-ops
 - Ease of installation
 - Environmental clearance

- Project – Design/Build

- Consultant Services
 - Field review

- Develop contract
Design/Build Hurdles

- Complexity
- Contract Documents
- Utilities
- Project Management
- Project Let
Michigan DOT Future RWIS

Superior Region

- Original 5 sites (1 test)
- 8 sites in 2009
- 20 sites in 2012
Michigan DOT Future RWIS

North Region

- Phase 1
 - 12 sites in 2010
- Phase 2
 - 8 sites in 2011
Successes

- Invested Stakeholders
- Experienced Team Members
 - ATMS Knowledge
 - Design Experience
 - Knowledge of concurrent projects (TMC)
- Meteorologists
- Extensive Field Investigations
- Comprehensive Data Document
MDOT North Region
Road Weather Information System
Concept of Operations

Matt Radulski
MDOT ITS Operations Engineer
MDOT North Region
(989) 344-1802
RadulskiM@michigan.gov

Jeff Dale
Kimley-Horn of Michigan
Lead Project Engineer
(919) 653-2978
Jeff.Dale@kimley-horn.com

Project Website:
www.MDOTITSPlanning.com