Weather and Speed Indicators to Support a Variable Speed Limit System in Southeastern Wyoming

Jenna Buddemeyer
Engineer I, Wyoming Department of Transportation

Rhonda Young
Associate Professor, Dept. of Civil & Arch. Engineering, Univ. of Wyoming
Introduction

- Wyoming weather
 - Unpredictable
 - Severe
- Safety problems
 - Speed variations
- Road closures
 - Inconvenient
 - Economic cumulative impact
 - $8-12 million in delay costs
- Without VSL, driver’s responsibility to pick a speed safe for conditions
Variable Speed Limits

- Variable speed limits (VSL)
 - Shown promise for improving safety on roadways subject to adverse conditions
- VSLs change advisory or enforceable speed limits
 - Weather
 - Traffic volumes
 - Incidents
 - Roadway construction
- Reduce speed variation
20 VSL signs in 10 locations
• 5 EB, 5 WB
Project corridor

- 52 miles from milepost 290.44 (Quealy Dome Interchange) to 238.15 (Peterson Interchange)
- 2005 AADT 10,800
- 60% of traffic on I-80 is heavy trucks
- Frequent adverse weather conditions
 - Blowing Snow
 - Heavy snow
 - High winds
 - Ice
- Seasonal Speed Limit from October 15-April 15
Existing ITS

Pre-trip
- Website
 - Cameras
 - Conditions
- 511
 - Driver chooses route of travel
 - Forecast for next 6 hours

Enroute
- Two Dynamic Message Signs (MP 234.6, 311.1)
- Road Weather Information System (RWIS) MP 272
Installed for VSL System

- Ten speed sensors
 - Six communicate with WYDOT
 - Four had to be manually downloaded
- Variable Speed Limit Signs
 - Installed in pairs
 - Speeds: 75, 65, 60, 55, 50, 45, 40, and 35
- Signs
- Portable DMS
- Speed Radar Signs
Road closures

- Problems
 - Wind Speeds
 - Weather Related
 - Snow, Ice, Limited Visibility, and Blowing Snow
- 29 Road Closures from September 2007 to May 2008
Road Closures

Reason for closures

Closure duration

- 8-hr closure has estimated impact of $8-12 million dollars
- Maximum duration
 - 22 hrs and 54 minutes
- Average duration
 - 8 hours and 24 minutes
- VSLs allow roads to remain open
Crash Data

- 2004 to June 2007
 - 1,787 crashes reported
 - 814 included heavy vehicles

Reported Crashes by Milepost
(2004-June 2007)
Current VSL Protocol

- Used until Decision Support System completed

- Wyoming Highway Patrol (WHP)
 - Initiate speed limit reduction based on visual inspection of conditions.

- Maintenance Foreman
 - May lower speed limit based on conditions if a WHP is not on duty.

- Traffic Management Center
 - May lower the speed limit if average vehicle speeds drop 15 mph and no one else on corridor to confirm conditions.
Data collected

- Speed Sensor data
 - 10 speed sensors
- Two sets of data
 - 75 mph data set- September 1-30, 2008
 - 65 mph data set- October 22-November 19, 2008
- Not all ten speed sensors worked properly during this phase
 - 6 during 75 mph data set worked
 - 7 during 65 mph data set worked
Data collected

- RWIS – collected every 5 minutes
 - SfStatus – status of the surface (dry, wet, ice warning, etc)
 - SfTemp – current surface temperature
 - AirTemp – current air temperature
 - RH – relative humidity – percent of moisture in air
 - Dewpoint – temperature at which air becomes saturated
 - AvgWindSpeed – average wind speed
 - GustWindSpeed – maximum wind speed
 - Wind Direction
 - Visibility (became available in October data set)
Baseline speeds

- Baseline speeds give insight into how drivers travel during favorable conditions.
- Used “Ideal Data” to find baseline speeds
 - No moisture on road
 - Gust Wind speeds < 45 mph
 - Visibility > 500 ft
- Two Data Sets
 - September 1-30, 2008, -12 days of ideal data
 - October 22-November 19, 2008-7 days of ideal data
- Analysis completed on:
 - Direction (Eastbound/Westbound)
 - Lane of travel
 - Time of Day
 - By Sensor
Baseline speeds

- **75 mph data set- Breakdown by direction**

<table>
<thead>
<tr>
<th>Direction</th>
<th>Ave, 50</th>
<th>Ave, 85</th>
<th>Med, 50</th>
<th>Med, 85</th>
<th>Stdev, 50</th>
<th>Stdev, 85</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB</td>
<td>72.5</td>
<td>79.0</td>
<td>73.0</td>
<td>77.6</td>
<td>6.8</td>
<td>6.8</td>
</tr>
<tr>
<td>WB</td>
<td>73.1</td>
<td>78.0</td>
<td>74.0</td>
<td>79.0</td>
<td>10.0</td>
<td>10.3</td>
</tr>
</tbody>
</table>

- **65 mph data- Breakdown by direction**

<table>
<thead>
<tr>
<th>Direction</th>
<th>Ave, 50</th>
<th>Ave, 85</th>
<th>Med, 50</th>
<th>Med, 85</th>
<th>Stdev, 50</th>
<th>Stdev, 85</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB</td>
<td>68.5</td>
<td>71.7</td>
<td>68.0</td>
<td>71.0</td>
<td>6.2</td>
<td>6.5</td>
</tr>
<tr>
<td>WB</td>
<td>68.7</td>
<td>72.3</td>
<td>69.0</td>
<td>73</td>
<td>7.5</td>
<td>7.5</td>
</tr>
</tbody>
</table>
Comparison/Conclusion

- Speed variation reduced from 75 mph to 65 mph data sets.
 - Seasonal speed limit reduced the speed variation
- 65 mph data set- Average and 85th percentile speeds were much higher than the posted speed than 75 mph data set
 - Drivers were more disobedient of the seasonal speed limit when conditions were “ideal”
- Baseline speeds will likely become a modeling variable during Phase II
RWIS Variables and Speed Analysis

- Purpose of task to determine RWIS variables impacting driver’s speeds

- Storm events
 - Split data into four events
 - Had both “ideal” and “non-ideal” days
 - Two events for each data set
Storms 1 and 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Storm 1</th>
<th>Storm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>p-value</td>
</tr>
<tr>
<td>Intercept</td>
<td>80.57061</td>
<td><0.0001</td>
</tr>
<tr>
<td>SfStatus</td>
<td>1.54445</td>
<td><0.0001</td>
</tr>
<tr>
<td>SfTemp</td>
<td>0.03795</td>
<td><0.0001</td>
</tr>
<tr>
<td>SubTemp</td>
<td>-0.07723</td>
<td>0.0045</td>
</tr>
<tr>
<td>GustWindSpeed</td>
<td>-0.03269</td>
<td><0.0001</td>
</tr>
<tr>
<td>Dewpoint</td>
<td>-0.02825</td>
<td>0.0003</td>
</tr>
<tr>
<td>Day_Night</td>
<td>1.86134</td>
<td><0.0001</td>
</tr>
<tr>
<td>RH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AirTemp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AvgWindSpeed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind Direction</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Storms 3 and 4

<table>
<thead>
<tr>
<th>Variable</th>
<th>Storm 3</th>
<th></th>
<th>Storm 3</th>
<th></th>
<th>Storm 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Final Model</td>
<td></td>
<td>Final Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Coefficient</td>
<td>p-value</td>
<td>Coefficient</td>
<td>p-value</td>
<td>Coefficient</td>
<td>p-value</td>
</tr>
<tr>
<td>Intercept</td>
<td>65.05848</td>
<td><0.0001</td>
<td>62.13351</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day_Night</td>
<td>0.978487</td>
<td><0.0001</td>
<td>2.74181</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SubTemp</td>
<td>0.18882</td>
<td><0.0001</td>
<td>0.30562</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RH</td>
<td>0.066066</td>
<td><0.0001</td>
<td>-0.1349</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vis1</td>
<td>-0.00006154</td>
<td><0.0001</td>
<td>0.00004437</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AvgWindSpeed</td>
<td>-0.05198</td>
<td><0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SfTemp</td>
<td>0.8418</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dewpoint</td>
<td>-0.11886</td>
<td><0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AirTemp</td>
<td>-0.08932</td>
<td><0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td>-15.80441</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW</td>
<td></td>
<td></td>
<td>-20.10388</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td>0.43225</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GustWindSpeed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.43225</td>
<td><0.0001</td>
</tr>
<tr>
<td>SfStatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions/Recommendations

- Each storm event similar but with slightly different results
 - Run analysis on larger data sets with multiple storm events to resolve discrepancies.

- Significant Variables
 - Day_Night
 - SfStatus
 - Wind Speed
 - Visibility

- Purpose of initial modeling allows some variables to be removed from larger datasets being compiled for Phase II.
VSL Use

VSL EB I-80 (Feb. 18-April 14)

Frequency

Speed (MPH)

35 40 45 50 55 60 65

- 256.17
- 262.40
- 267.71
- 273.85
- 280.36
VSL Use

VSL EB I-80 (Feb. 18-April 14)

Average Duration (Hours) vs. Speed (MPH)

- 256.17
- 262.40
- 267.71
- 273.85
- 280.36
VSL Use

VSL EB I-80 (Feb. 18-April 14)

Cumulative Duration (Hours)

Speed (MPH)

- 256.17
- 262.40
- 267.71
- 273.85
- 280.36
VSL Sign Significance

- **Task:** Determine whether VSL signs impact vehicle speeds
- **Data period**
 - VSL signs installed and operational Feb. 13, 2009
 - Preliminary analysis from Feb. 17, 2009 to March 17, 2009
- **Preliminary Results**
 - **0.47** to a **0.74** mph speed reduction observed for every mph of speed reduction posted in the VSL
Future work

- Analyses with larger more comprehensive data sets.
 - Precipitation Rate and Visibility for all data
 - Multiple storm events at a time

- New speed sensor software
 - Look at getting individual speeds to analyze truck and passenger car data
QUESTIONS

Jenna Buddemeyer
Engineer I, WYDOT
jbudd@uwyo.edu

Rhonda Young
Associate Professor, Dept. of Civil &
Arch. Engineering, Univ. of Wyoming
(307) 766-2184
rkyoung@uwyo.edu