Presentation Overview

• SHRP 2 background and four focus areas
• Safety focus: the Naturalistic Driving Study
• Reliability focus: overview and the “rural angle”
Authorization for SHRP 2

• Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU) in 2005
• A 7 year $170M program- original funding $150M- with 4 focus research areas
• Managed/staffed at TRB, a unit of the National Academy of Sciences
• Program is finite- ends March 31, 2013, but with possible extension due to late re-authorization
Four SHRP 2 Focus Areas

• **Safety**: to improve highway safety through better understanding of driver behavior and associated crash risks

• **Reliability**: to provide more reliable travel times by reducing the impacts of non-recurring congestion

• **Capacity**: to develop approaches and tools to systematically integrate environmental, economic and community requirements into new capacity decisions

• **Renewal**: to develop methods that are rapid, cause minimal disruption and produce long-lasting facilities
FOUR FOCUS AREAS

Safety
($51M)

Safe Highways

Capacity
($21M)

Better Transport Decisions

Rapid Renewal and Lasting Facilities

Reliability
($20M)

Reliable Travel Time

Great Customer Service

Renewal
($34M)
Safety:

Understanding Driver Behavior And Crash Risk

- How the driver interacts with and adapts to the vehicle, roadway characteristics, traffic environment, traffic controls, weather, etc.
- Differences in crash risk associated with these interactions
- Proposed countermeasures based on the findings
Safety Focus Area Themes

- **Naturalistic Driving Study** - instrument vehicles of about 3000 volunteer drivers (6000+ total drivers?) with cameras and other sensors, in 6 US locations over 2+ years
 - **Road Data Inventory** - capture road features and geometry via mobile data collection technology
 - **Data analysis methodologies**

- **Site-Based Video System** - develop a portable, automated video system prototype that is able to track vehicle trajectories at an intersection or on a road segment
SHRP 2 NDS Study Sites

Seattle, WA
Bloomington, IN
Raleigh-Durham, NC
Tampa Bay, FL
Central PA
Erie County, NY
Participants

• Men and women in several age groups:
 • Teen (16-20) SPLIT
 • Young Adult (21-35)
 • Middle Adult (36-50)
 • Younger Older Driver (51-65)
 • Middle Older Driver (66-75)
 • Older Older Driver (76+)

1950 instrumentation packages 2 years

• 3100 participants
• 3900 data years
• 6 sites
• Passenger cars, vans, SUVs, pick ups
Camera Views
In-Vehicle Video
Use of NDS Data: Examples

- Distracted driving: policies, laws on use of hand-held devices, texting, etc., for teens or broader population
- Drowsiness: policies, regulations for commercial drivers
- Vehicle design/technologies: integrate advanced technologies to minimize or reduce distraction, evaluate crash warning algorithms
- Education: feedback to teens and parents
- Roadway: improved design, operations, signage, hardware, etc.
- Other: planning, highway operations/reliability, fuel efficiency (drive cycles), environmental impacts
CAPACITY RESEARCH
Tackles *recurring* congestion from inadequate base capacity

CONGESTION

Reliability Research
Tackles *nonrecurring* congestion resulting from incidents, special events, weather, etc.
The Major Sources of Traffic Congestion

- Bottlenecks are places with *recurring congestion*
 - The Capacity focus area aims to help address these “everyday” problems through collaborative decision-making
 - Rural bottlenecks will become more common on cross-country freight corridors

- The other five sources generate *non-recurring congestion*
 - The Reliability focus area addresses these problems of *variability in performance*
 - *The “Rural Angle”: Weather, Work Zones, and Incidents*
What Is Travel Time Reliability?

The consistency or dependability in travel times, as measured from day to day and/or across different times of the day.

Sources: Federal Highway Administration and Texas Transportation Institute
Effects of Incidents and Weather on Reliability

Weekday Travel Times
5:00-6:00 P.M., on State Route 520 Eastbound, Seattle, WA

Travel Time (in Minutes)

- 2 Incidents with Rain
- 3 Incidents
- 1 Incident with Rain
- 4 Incidents
- Rain
- 1 Incident

Martin Luther King Day
Presidents Day

Number of Incidents

Jan 3 Feb 2 Mar 4 Apr 3

2003
Expected Rural Congestion
This Was Not an Issue in 2000

Note: High-volume truck portions of the National Highway System carry more than 10,000 trucks per day, including freight-hauling long-distance trucks, freight-hauling local trucks, and other trucks with six or more tires. Highly congested segments are stop-and-go conditions with volume/service flow ratios greater than 0.95. Congested segments have reduced traffic speeds with volume/service flow ratios between 0.75 and 0.95.

Reliability Research Goals

• Research program targets variation in travel time—that frustrating characteristic that prompts motorists to allow an hour to make a trip that normally takes 30 minutes

• The aim is to make this variability more visible and to begin to address it.

• Travel Time Reliability is a new topic: we need vocabulary, data, metrics
Reliability Research Program Status

- 12 active projects- total value $14.05 M
- 7 remaining anticipated projects- total value $6.3 M
- Total approved program $20.35 M
- Early projects starting to deliver products
What Highway Agencies* and Other Stakeholder Communities Need To Improve Travel Reliability

- To organize themselves to be able to better address traffic operations and travel reliability
- To collect the right data and analyze it with the right tools to develop better strategies and projects
- To better understand and influence driver behavior: a key contributor to non-recurring congestion
- To plan, program, design, and deliver the right projects to tackle non-recurring congestion
- New ideas and innovations that help address non-recurring congestion

* State DOTs, Traffic Operations Agencies and MPOs
Key Stakeholder Groups Targeted For Reliability Products

- Highway agency decision-makers
- Highway agency operations professionals
- Highway designers
- Transportation planning and programming professionals
- Incident/emergency responders
- Traffic technology and data providers in the private sector
- Academic researchers
Product Groupings

Organizing Agencies to Improve Reliability

<table>
<thead>
<tr>
<th>Project Number</th>
<th>Anticipated Products</th>
<th>Investment ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L01</td>
<td>Guide to transportation agency business processes which will improve reliability</td>
<td>0.40</td>
</tr>
<tr>
<td>L06</td>
<td>Guide to structuring organizations to improve traffic operations</td>
<td>1.00</td>
</tr>
<tr>
<td>L12</td>
<td>Training and certification programs for traffic incident responders to improve safe and quick clearance</td>
<td>1.00</td>
</tr>
<tr>
<td>L17</td>
<td>An overall reliability program framework with specific best practices and outreach materials that make the case for highway agencies focusing on improved travel reliability</td>
<td>1.50</td>
</tr>
</tbody>
</table>

TOTAL INVESTMENT: $3.90 Million

Interested communities: State DOT and MPO executives, State DOT and MPO traffic operations professionals, Incident responders (police, fire, EMS, towing companies), Traffic technology and service businesses, Researchers and academia
Product Groupings

New Data Collection and Analysis Tools

<table>
<thead>
<tr>
<th>Project Number</th>
<th>Anticipated Products</th>
<th>Investment ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L02</td>
<td>Guide and tools for developing effective travel reliability monitoring programs</td>
<td>1.80</td>
</tr>
<tr>
<td>L03</td>
<td>Methods and tools for analyzing the travel reliability impacts of projects</td>
<td>1.75</td>
</tr>
<tr>
<td>L04</td>
<td>Guide for building reliability considerations into travel demand models and traffic simulation models</td>
<td>1.25</td>
</tr>
<tr>
<td>L13, L13A, L16</td>
<td>Web-based archive of all SHRP 2 reliability research data to support Additional agency and university research</td>
<td>1.85</td>
</tr>
</tbody>
</table>

TOTAL INVESTMENT: $6.65 Million

Interested communities: State DOT and MPO traffic operations professionals, State DOT and MPO planners, Travel demand and simulation modelers, Traffic technology and service businesses, Researchers and academia
Product Groupings

Understanding and Influencing Driver Behavior

<table>
<thead>
<tr>
<th>Project Number</th>
<th>Anticipated Products</th>
<th>Investment ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L10, L10abc</td>
<td>Strategies to modify driver behaviors that cause non-recurring traffic congestion</td>
<td>1.50</td>
</tr>
<tr>
<td>L14</td>
<td>Guide for effectively communicating travel time reliability information to system users</td>
<td>1.00</td>
</tr>
</tbody>
</table>

TOTAL INVESTMENT: $2.50 Million

Interested communities: State DOT and MPO traffic operations professionals, Traffic technology and service businesses, Researchers and academia, Commuters and other highway users
Product Groupings

Improving Planning, Programming, and Design

<table>
<thead>
<tr>
<th>Project Number</th>
<th>Anticipated Products</th>
<th>Investment ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L05</td>
<td>Tools to improve reliability to performance measures and link them to transportation planning and capital programming</td>
<td>1.80</td>
</tr>
<tr>
<td>L07</td>
<td>Analysis of cost effective design features that will improve reliability</td>
<td>2.75</td>
</tr>
<tr>
<td>L08</td>
<td>Tools to link reliability to highway capacity calculations and methods (including potential additions to the Highway Capacity Manual)</td>
<td>0.50</td>
</tr>
<tr>
<td>L09</td>
<td>Design guidance on specific roadway features that will improve reliability (including potential additions to the AASHTO Policy on Geometric Design)</td>
<td>0.50</td>
</tr>
</tbody>
</table>

TOTAL INVESTMENT: $5.55 Million

Interested communities: State DOT and MPO executives, State DOT and MPO traffic operations professionals, State DOT and MPO planners, Highway designers, Travel demand modelers, Researchers and academia
Product Groupings

<table>
<thead>
<tr>
<th>Project Number</th>
<th>Anticipated Products</th>
<th>Investment ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L11</td>
<td>Developing innovative future operations strategies to improve reliability</td>
<td>1.00</td>
</tr>
<tr>
<td>L15</td>
<td>Supporting promising innovations to improve travel time reliability</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>TOTAL INVESTMENT: $1.50 Million</td>
<td></td>
</tr>
</tbody>
</table>

Interested communities: State DOT and MPO traffic operations professionals, Incident responders (police, fire, EMS, towing companies), Traffic technology and service businesses, Researchers and academia
Rural Focus on Products

• What are the causes of non-recurring congestion and what can be done to address it?
• How to organize to improve reliability
• How to re-engineer business processes to improve reliability
• How to develop an effective monitoring and data collection program
• How to work reliability into planning, modeling, programming, and budgeting
• What geometric design features have positive and negative impacts on reliability?
• How can we train the incident responder community to achieve safe, quick clearance?
• How can we best communicate information about travel reliability to technical staff, decision-makers, and travelers?
Incident Responder Training, Atlanta Georgia Pilot
Communication/Dissemination

• Progress reports and research results available during the program lifespan
• Website www.trb.org/shrp2/
• Publications
 ✓ Quarterly and Annual Reports
 ✓ Program briefs for each focus area
 ✓ Project briefs for completed projects
 ✓ Expected products chart