Communications for Rural ITS

New approaches and challenges

Bill Legg
State ITS Operations Engineer

Washington State Department of Transportation
WSDOT’s 310 Wireless communications Sites

Includes sites for voice communications and ITS equipment locations
WSDOT’s Wireless ITS locations ~ 150

Does not show substantial ITS deployment supported with fiber optic communications.
ITS equipment connected via Wireless

- Electronic message signs
- Variable speed limit systems
- Remote weather information stations (RWIS)
- Highway Advisory Radio (HAR) and connected sign beacons
- License plate readers
- Traffic detection (radar, etc)
- Cameras - full motion PTZ and snap shot
Why Wireless Data?

- Lower cost per mile as compared to fiber in rural areas
- IP standards have increased competition and decreased equipment costs by almost 50% in the last 10 years.
- Potential wide area of coverage
- Higher reliability than commercial services (DSL and copper)
- Lack of acceptable commercial services in rural areas.
- Potentially less expensive over time compared to leased services particularly cell
- Not a replacement for fiber
New approaches

- **Backhaul**
 - Capacity needs to match the need: WSDOT’s wireless backbone is up 155MBs
 - IP based connectivity
 - Serial to Ethernet converters for legacy devices

- **Connectivity**
 - Point to Point & Point to Multipoint
 - Medium speed wide area coverage

- **Licensed or Unlicensed**
 - 4.9 GHz, new licensed spectrum for public safety. Can be deployed for up to one year before a license is required.
Connectivity - Point to point

- **Backhaul**
 - Backbone or dedicated local short haul
 - Licensed
 - Longer distanced up to 50 miles
 - Fixed Higher Capacity up to 155 MBs
 - Lower cost per mile compared to fiber for rural areas
 - Requires Line of sight
 - IP based
Connectivity:
Point to Point & Point to Multipoint

- Licensed or Unlicensed
- Distances up to 30 miles
- Capacity up to 24MBs
 - Longer the distance the lower the bandwidth
- IP based
- Line of sight or near line of sight
- All ITS devices including full motion PTZ
Connectivity: Wide Area Coverage

- Licensed
- Distances up to 50 miles
- Lower bandwidth up to 64KBs
 - Bandwidth is fixed 64KB or 32KB
- One base can handle several ITS devices
- IP based
- Non Line of sight
- All ITS devices except full motion PTZ
- Support mobile applications
Connectivity - Wide Area

- Wide area coverage from a selected site. WSDOT Gabi, Burch and Goat Mt communication sites provide over 6000 square miles of coverage.
Connectivity - Wide Area

- Near line of site at 49 miles.

<table>
<thead>
<tr>
<th>Location</th>
<th>Frequency (MHz)</th>
<th>Percent (F1)</th>
<th>Latitudinal Location</th>
<th>Longitudinal Location</th>
<th>Elevation (ft AGL)</th>
<th>Azimuth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burch Mtn.</td>
<td>799.2</td>
<td>100.00, 50.00, 0.00</td>
<td>47° 22' 59.20 N</td>
<td>120° 22' 15.70 W</td>
<td>4731 ft ASL</td>
<td>128.56°</td>
</tr>
<tr>
<td>Antenna CL</td>
<td>110.0, 120.0 ft AGL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WS DOT - NCR Burch Mt. to Dodson Rd VMS

<table>
<thead>
<tr>
<th>Location</th>
<th>Frequency (MHz)</th>
<th>Percent (F1)</th>
<th>Latitudinal Location</th>
<th>Longitudinal Location</th>
<th>Elevation (ft AGL)</th>
<th>Azimuth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dodson Rd</td>
<td></td>
<td></td>
<td>47° 06' 14.60 N</td>
<td>119° 33' 26.94 W</td>
<td>1183 ft ASL</td>
<td>309.16°</td>
</tr>
<tr>
<td>Antenna CL</td>
<td>90.0, 15.6 ft AGL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mar 31 99
Connectivity - Wide Area

- Near line of site at 49 miles.
- RWIS, Sign Control and Snap Shot Camera
Connectivity - Wide Area

- Non Line of sight Sign Control
Licensed or Unlicensed

- Licensed
 - 6Ghz, 11GHz, 18GHz and 23GHz up to 155MBs
 - Advantages – no interference
 - Disadvantages – higher costs
 - 4.9 GHz up to 24MBs
 - Advantages – no interference, lower costs
 - Disadvantages – limited bandwidth

- Unlicensed
 - 900Mhz, 2GHz and 5.8GHz up to 24MBs
 - Advantages – deploy quickly, low cost
 - Disadvantages – possible interference in urban areas
 - Risk of future interference
Challenges – Bandwidth and Location

➢ Wireless can be bandwidth limited
 ▪ Use higher capacity equipment to connect hubs or sites together and to get back to the Traffic Management Center
 ▪ Use Point to Point and Multipoint systems to connect to Devices that need bandwidths over 64KBs (PTZ Cameras)
 ▪ Use Wide area systems to connect more devices over a greater distance or where you do not have line of site or only need moderate bandwidth
 ▪ Plan accordingly – know your backhaul capability

➢ Location
 ▪ Take into consideration your wireless connection when locating an ITS Device
 ▪ Line of site provides the best reliability for Point to Point and Multipoint systems
 ▪ Do you anticipate mobile data needs in your future?
Challenges – Equipment and Costs

- **Equipment Type**
 - Licensed
 - Unlicensed

- **Costs**
 - High capacity, High reliable microwave backhaul - $50K to $60K per end
 - Lower capacity, Point to Point and Multipoint - $2K to $4K per end
 - Wide area 64Kbs $20k per repeater or site and $2.5k per radio at an ITS location
Challenges – Standards and Product Life Cycle

- Standardization and Product Life Cycle
 - Microwave backhaul and Wide area equipment typically have a longer product life cycle 15 to 20 years.
 - Easier to standardize on equipment
 - Point to point and Multipoint systems have shorter life cycles. They tend to follow a PC (consumer electronics) type trend.
 - Challenging to standardize on equipment and sometimes a vendor